

FAA Research on Large-Scale Test Substantiation

John S. Tomblin Waruna Seneviratne

National Institute for Aviation Research Wichita State University Wichita, KS

Damage Tolerance and Maintenance Workshop

Rosemont (Chicago), IL July 19-21, 2006

Research Program Objectives

Primary Objective

Demonstrate acceptable means of compliance for fatigue, damage tolerance and static strength substantiation of composite airframe structures

Secondary Objectives

- Evaluate existing analysis methods and building block database needs as applied to practical problems crucial to composite airframe structural substantiation
- Investigate realistic service damage scenarios and the inspection & repair procedures suitable for field practice

Goals of the Program

 Produce a guideline FAA document which demonstrates a "best practice" procedure for full-scale testing protocols for composite airframe structures with examples

Candidate Research Tasks

- 1. Load Enhancement Factor Approach and Fatigue Life Assessment
 - Various approaches which have been or are currently being used
 - Guidance on Cycle Truncation
 - Address Environmental Factors used during testing
 - Full-Scale Validation and Examples
- 2. Damage Tolerance and Repair Substantiation
 - Categories of damage
- 3. Analysis Methods
 - Define procedures necessary to support testing and building block approaches

Transport Aircraft Applications

Other Applications of Advanced Materials

Initial Working Group

- Federal Aviation
 Administration
 - Peter Shyprykevich & Curtis Davies
 - FAA William J. Hughes Technical Center, NJ
 - Larry Ilcewicz
 - FAA/Seattle Aircraft Cert. Office
 - Lester Cheng
 - FAA-Small Airplane
 Directorate
 - Evangelina Kostopoulos
 - FAA ACO Chicago
 - David Ostrodka
 - FAA ACO Wichita

- Industry Members
 - Jason Russell
 - Liberty Aircraft Co.
 - Ric Abbott
 - Abbott Aerospace Composites
 - Paul Brey
 - Cirrus Design Corp
 - Jerry Housner
 - AlphaStar
 - Pierre Harter
 - Adam Aircraft
 - Matthew Miller
 - Boeing

Load Enhancement Factor Approach and Fatigue Life Assessment

- Background most test programs reference the Navy/FAA reports by Whitehead, Kan, et. al. (1986) and follow that approach
- Most test programs have used the conclusions developed in this report regardless of design features, failure modes and/or materials
- EADS-CASA study (used for A340 aircraft) approach (2001) but redefined the shape factors

LEF - Overview of Methodology

Comparison of graphite-epoxy and aluminum fatigue life scatter distributions

data was pooled on the basis that the life scatter is not significantly influenced by load level, loading mode, laminated layup, fatigue life and failure mode

Load / Life Tradeoff

Load Enhancement Factor Approach

1.0

13.3

Load Enhancement Factor Approach

Comparisons of NAVY/FAA data and EADS CASA data

1986 study conservatively estimated static shape parameter at 20

1986 study conservatively estimated fatigue shape parameter at 1.25

EADS CASA Fatigue Strength Tests

Load Enhancement Factor

Comparisons of NAVY/FAA data and EADS CASA data Load Enhancement Factors

Confidence limits set based on fatigue strength only since the mean and mode static strength values seem stable

Task Research Objectives

- Generate data and guidelines for the generation of Weibull shape parameters for
 - Different material systems
 - Loading modes and geometries
 - Environments
 - Bonded joints (2 thicknesses)
 - Sandwich construction
 - Multiple R-ratios

Develop shape parameters for different geometries, environments, layups, and loading modes

Data Development

- Use existing lamina and laminate data for static strength
- Static / Fatigue Loading
 - Notched Tension
 - Notched Compression
 - Bonded joints
 - Interlaminar shear
 - Sandwich construction
 - RTD and ETW

- Fatigue
 - Const. amplitude (5 Hz)
 - R-ratios
 - 0 (Fuselage)
 - -0.2, 5 (Wing)
 - -1 (Control Surface)

Load Enhancement Factor (LEF)

Based upon detailed design configurations with and without flaws (notched, bonded, interlaminar shear, sandwich construction)

Material	Test Method	Loading Condition	Standard	Static Test Environment		Cyclic Test R ratio (3 Stress Levels)			
				RTD	ETW	-0.2	0	5	-1
	Open-Hole	Tension	ASTM D5766	6	6	18	18		18
		Compression	ASTM D6484	6	6			18	
40/20/40	Bonded Joint		Modified ASTM	6	6	18		18	
40/20/40	(t=0.01-inch)	Tension	D5766						
Laminate	Bonded Joint			6	6	18		18	
	(t=0.06-inch)							.0	
	Double Notch	Interlaminar		6	6	18		18	
	Compression	Shear	A3110 D3004	0	0	10		10	
Sandwich	3-Ply Facesheet w/ 0.5-inch Core	4-Point Bend	ASTM C393	6	6		18		

- For each material system
- Combine with existing lamina and laminate data
- 72 Static specimens
- 198 cyclic specimens (3 stress levels)
 - Constant amplitude
 - Frequency: 5 Hz

Environmental Enhancement Factor

- Develop guidelines for the development of environmental enhancement factors for static strength loading
- Use data developed at lamina, laminate, element and subcomponent to demonstrate application

Categories of Damage & Defect Considerations for Primary Composite Aircraft Structures

Category	Examples	Safety Considerations (Substantiation, Management)		
<u>Category 1</u> : Damage that may	BVID, minor environmental	Demonstrate reliable service life		
go undetected by field inspection	degradation, scratches, gouges,	Retain Ultimate Load capability		
methods (or allowable defects)	allowable mfg. defects	Design-driven safety		
<u>Category 2</u> : Damage detected	VID (ranging small to large),	Demonstrate reliable inspection		
by field inspection methods @	mfg. defects/mistakes, major	Retain Limit Load capability		
specified intervals (repair scenario)	environmental degradation	Design, maintenance, mfg.		
<u>Category 3</u> : Obvious damage	Damage obvious to operations in	Demonstrate quick detection		
detected within a few flights by	a "walk-around" inspection or	Retain Limit Load capability		
operations focal (repair scenario)	due to loss of form/fit/function	Design, maintenance, operations		
<u>Category 4</u> : Discrete source	Damage in flight from events	Defined discrete-source events		
damage known by pilot to limit	that are obvious to pilot (rotor	Retain "Get Home" capability		
flight maneuvers (repair scenario)	burst, bird-strike, lightning)	Design, operations, maintenance		
<u>Category 5</u> : Severe damage	Damage occurring due to rare	Requires new substantiation		
created by anomalous ground or	service events or to an extent	Requires operations awareness		
flight events (repair scenario)	beyond that considered in design	for safety (immediate reporting)		

Damage Tolerance Substantiation *PROGRAM OBJECTIVES*

- Provide guidance documentation as to industry "best practices" to damage tolerance substantiation in full-scale test protocols
 - Address different damage categories
 - Address Allowable Damage Limit (ADL)
 - Address damage growth threshold and definition of Critical Damage Threshold (CDT)
 - Assess repairs and repair's repeated load capability and address Repairable Damage Limit (RDL)

Candidate Work Tasks

- Fatigue & damage tolerance substantiation after static strength substantiation on a separate test article
- Fatigue, static strength and damage tolerance substantiation using the same test article
- One of the above but with variations in the loading, and/or severity of damage to demonstrate an ability to measure early warnings of failure in the test (and predict a failure)
- Supporting data needs
 - Static load cases and repeated loading envelops
 - Test fixture design, fabrication & setup and test article instrumentation
 - Building block testing to support analysis groups
 - LEF & truncation limits for repeated load testing (shared databases)
 - Environmental factors for residual strength testing

Note: Test plans consider damages ranging from allowable damage limit (ADL) to critical damage threshold (CDT) and repairs up to the repairable damage limit (RDL)

Validation and Test Examples on Full-Scale Structures

- Need multiple, representative full-scale structures for testing
 - Demonstrate effects in multiple full-scale tests
 - Characterize load versus life effect on multiple fullscale articles
 - Damage Tolerance substantiation articles for various categories of damage
 - Multiple repair substantiation articles
- Problem ??? cost of multiple structures for tests

Full-Scale Specimens

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Wichita State University

Full-Scale Specimens

FAA programs (assessing any age effects as well as DT), NDE examination Currently 1 article is planned (documentation example)

NATIONAL INSTITUTE FOR AVIATION RESEARCH

Wichita State University

Full-Scale Specimens

- Two fuselage tests are planned
- Structure is sandwich construction / minimum gage

Additional Full-Scale Tests

- Using the FASTER facility at the FAA Technical Center (Atlantic City, NJ)
- Fuselage loading tension loading including pressure
- Test articles are representative of general aviation fuselage (sandwich construction)

Verification for Full-Scale Structure

- Category 1 damage state BVID, minor environmental degradation, manufacturing defects, minor service damage
- Retain ultimate load and reliable service life
- *Constant amplitude* repeated loading (N)
- N and load levels selected to produce fatigue failures
- Compression dominant

Damage Tolerance Testing

- Category 2 Damage VID, major environmental degradation
- Demonstrate reliable inspection and define intervals
- Compression
- Impact Damage
- Spectrum Loading
- Retain Limit Load capability
- Demonstrate no or minor growth under repeated loading (inspection interval)

Damage Tolerance Testing

- Category 3 Damage damage obvious to operator – should be detected within a few flights
- Demonstrate quick detection
- Define damage threshold
- Compression Loading / Impact Damage
- Spectrum Loading (LIMITED CYCLES)
- Retain Limit Load capability

Repair Substantiation

- Demonstrate repair for category 2 and 3 damage states
- Work with OEM to develop guidelines for Repairable Damage Limit (RDL)
- Demonstrate restoration of full service life under spectrum loading
- Demonstrate restoration of ultimate load

Other Test Articles

Initial Test Article Planning

LEF / Damage Tolerance verification article – 2 fuselage repeated load tests – one using traditional philosophy (NAVY/FAA report), one using updated philosophy (defined earlier)

Damage Tolerance verification article – focused on repair and category 3 and/or 4 damage approx. 6 fuselage repeated load tests – tension loading and puncture damage

Analysis Support

PROGRAM OBJECTIVES

- Identify procedures necessary to maximize analysis support for certification
- Define some options using analysis and demonstrate how it can be used in conjunction with the building block process
- Perform "calibration" tests for model as a subset of the building block process
 - Static and Fatigue
 - Damage Tolerance
 - Repair

Contact Information

John Tomblin National Institute for Aviation Research 1845 Fairmount Wichita, KS 67260-0093 ph : (316) 978-5234 fx : (316) 978-3175 john.tomblin@wichita.edu